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A generalized definition of the adiabatic exponent, which holds for ideal and real gases, is investigated. 
The generalized definition makes it possible to apply a number of formulas of engineering thermodynamics 
and gas dynamics to a real gas, using a parameter called the "ideal" temperature. 

The well-known definition of the adiabatic (isentropic) exponent by means of the relation 

k = cffc~, (1) 

is appropriate oniy for an ideal gas. For a real gas in a state far removed from the ideal  state, this definition leads to 
completely wrong results. For simplicity, it is often convenient to assume k = const for an ideal gas. But, as can be 

easily shown, the formulas for the speed of sound a = k , / ' ~ a n d  for the cri t ical  speed in a nozzle Ccr =,/kcrPcrVcr = 
acr are valid for an ideal gas with k defined by (1) but not constant. Other formulas which include k are also valid if 
an appropriate average value of k is used, but, in formulas in which k appears both as an exponent and as a mul t ip ly-  
ing factor, the averaging for the two cases is different. 

It is to be expected that an appropriate definition of k for a real gas would lead to analogous formulas, in parti-  

cular, to an exact formula for the speed of sound, similar to that for the ideal gas. The averaging of k for a real gas, 

when necessary, may be more complicated than for an ideal  gas, for which k depends only on T, since in the case of a 

real gas k may depend on two parameters. 

From the definition (1), using simple differential relations characteristic of the adiabatic process, the equation 

of the adiabatic of an ideal  gas, which is exact for k = const, can be derived. For variable k this equation is exact 

either when the appropriate average k is used, or for an elementary adiabatic process. The generalized definition of 

the adiabatic exponent should have the same properties, i . e . ,  it should yield, on the basis of the same relations, an 

analogous equation for the adiabatic of a real gas, while, in the special case of an ideal gas, this definition should re- 

duce to definition (1) directly, i, e. , independently of the differential relations mentioned above. 

Since the specific heats Cp and c v are the temperature derivatives of the enthalpy i and the internal  energy u, and 

in an adiabatic process the entropy s is constant, the definition of k should be connected with these three most impor-  

tant thermodynamic functions of state i, u, s. 

Therefore, the adiabatic exponent should be defined as the partial derivative of enthalpy with respect to internal 

energy '-t constant entropy, i, e , ,  by the formula [1] 

k = ( ai /au)  s, ( 2 )  

In the case of an ideal gas i and u depend only on T, and therefore the partial derivative in (2) should be re- 

placed by the total derivative di/du, which can be represented as the ratio of the two derivatives di /dT and du/dT, 

eoual to c and c. respectively. Thus, the generalized definition reduces directly to the special definition (1) in the 
* p V J 

case of an ideal gas. 

Definition (2) can also be represented as the ratio of the ~vo partial derivatives (0i/OT)s and (0u/0T) s, but these 

are not equal to the specific heats since c_ = (Oi/ST)p and c v = (au/OT)v. Definition (1) can be obtained only in the , p 

case when these derivatives are identical,  and thus it does not hold for a real gas. 

However, since i = u + pv, it is possible to replace the partial derivatives of i and u with respect to T by deriva-  

tives with respect to pv or, even better, with respect to the parameter 

ft =/:m/R, (3) 

which may be called the "ideal" temperature of the real gas, since Ohas the dimensions of temperature and for an 

This leads to the relations 

R \aa " R tOOl, 

ideal gas 8- = T. 

(4) 

v 

k = :pRo.  (6) 
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For an idea l  gas formula (4) becomes 

~p _ k _ cp.  : = ~ = - - , 1  c~ (4a) 

k - - 1  R ' "~ k - - 1  R 

and formulas (5) and (6) correspond to Meyer's equation and to definition (1), respectively.  The quantities ~p and ~v 

are convenient for prac t ica l  calculations.  

From definit ion (2) and the fundamental  different ia l  equation of thermodynamics Tds = du + pdv = di - vdp i t  

follows, assuming ds = 0, that 

v ap - ] ] .  (7) 
k - -  P ( - ~ ) s - - - - [  o0(lnp)(lnv) 

Starting from formula (7), we can eas i ly  derive the formulas for the speed of sound and for the cr i t ica l  speed m e n -  
t ioned above, taking into account the well-known formula a = v/'('~p]Op)s and the fact  that ecr is determined by the 

min imum of the quantity v / c ,  where d(c2/2) = - v d p .  

If  we assume that k, as defined by (2), is constant (first approximation),  then, starting from (7), we can easi ly  

derive the equation of the adiabat ic  in the form 

pv k = const; pt~-~p= const; v~:~ -- const. (8) 

Substituting 8 = T for an ideal  gas, and taking account of (4a), we obtain the well-known equations of the ad i a -  

bat ic  of  an ideal  gas with k = const. 

If k, as defined by (2), is variable,  then, starting from (7), we obtain equations analogous to (8), but the values 
of k, gp, ~v should then be averaged over 8 at s = const in an appropriate manner,  s imilar  to the averaging over T for 
an idea l  gas. Note, that the assumption that k, as defined by (2), is constant holds for superheated steam with approx- 
imate ly  the same accuracy as the assumption that k, as defined by (1), is constant for i d e a l  water vapor. With the same 

accuracy one may take k = k*, where k refers to superheated steam and k* to idea l  water vapor. 

This property is not accidental ,  as i t  might  seem from the fact  that the adiabat ic  exponent of superheated steam 
is an empi r i ca l  quantity, but is rather a result of the considerations given below and is, apparently,  common to the 

vapors of other liquids, 

All  idea l  gas formulas which contain k, or which are based on the equation of s tate (for example ,  formulas for 
work or for processes at T = const), remain valid for a real  gas if  the parameter  8 is substituted for the temperature T. 
This is also the case when k is variable;  i f  k is averaged in the appropriate way, the role of the derivat ive dk/dT,  which 

governs the averaging process for an idea l  gas, wil l  be played by the derivat ive (0k]O0)s in the case of a real  gas. 

Thus, the use of the parameter  8 instead of T in the general ized definit ion of the adiabat ic  exponent is quite e f -  
fect ive for the general izat ion of several  engineering formulas; in part icular,  formulas which describe the flow processes 
of a gas or a vapor. Therefore, i t  is convenient to add the parameter  8 tO steam tables,  and to introduce the lines 8 = 
= const in Mollier charts, Clearly,  the substitution of 8 for T is inadmissible in other cases (in the formulas for entropy, 
for the eff ic iency of a Camot cycle,  etc. ). The condition k = const is inappl icable  in more exac t  calculat ions and the 

variat ion of k must be taken into account. In the case of an ideal  gas k depends only on T, and the total  derivat ive 
dk /dT  exists. This follows from the condition i = i (T), a result of the equation of state of an idea l  gas, which can be 

written in the form 8 = T. Accordingly,  for an ideal  gas i = i (8). 

In the case of a real  gas 8 ~ T and, therefore, when i = const T varies (quite considerably) even for quite mod-  
erate changes in p or v. This manifests i tself  in the Joule-Thomson thrott l ing effect,  which is positive for T < T i, i . e . ,  
in a l l  ordinary steam installations. But the necessary and sufficient condition for the exponent k of a real  gas being a 
function of one variable only is not i = i (T), as in the case of an idea l  gas, but i = i (8). Then also u = u (8) and the 
exponent k, as defined by (2), is a function of 8 only. From the condition i = i (8)  i t  also follows that for an idea l  gas 

(8  = T) i = i(T).  The converse is not necessari ly true, but there are some indications that  i ~ i ( 8 )  may be true for 

superheated vapors in a wide range of temperature,  as is the case for superheated steam. 

Let us denote by 8 * a n d  T* the l imits  of 8 and T when v ~ .o at i = const, Since as v "-* ~ a l l  real  gases be- .  

come ideal ,  we have 8 "  = T*, 

Consider the quantit ies 

~ = t ~ - - ~ * ;  ~ 7 = T - - T * ;  g = T - - t ~ = ~ T - - ~  ~. (9) 

Clearly,  6 = 0 for an ideal  gas and increases in absolute value with decreasing v for a real  gas. From steam 

tables we find that 6 �9 0, but the sign of  6 may  depend on temperature.  
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Starting from Van der Waa l ' s  equation, it  can be shown that 

a b T  
. . . . . . .  0 o )  

Rv v - -  b 

If the pressure is not very high, then v >> b and 

~ Rv a - Rvv 1 , O0a)  27 Tcr / 

Consequently, when T < (27/8) Tcr = T i /2  , i.e., in ordinary steam installations,  both 6 and 5 T are positive 
and increase with decreasing v at constant i. The quantity 6 9, being the difference of two positive quantities, cannot 
exceed in absolute value the greater of the two and, since 5 and 6 T increase simultaneously,  one may expect  6& to be 
small,  Obviously, this assumption has no rigorous justif ication, but i t  is justified empir ica l ly .  

Thus, in the case of superheated steam [2] at i ~ 3455 X l0  s J/kg, an increase in pressure from 0.01 X 10 s N /m 2 
to 98, 1 X 105 N / m  2 results in an increase in T in the amount of 47.3  K, whereas & increases by only 6. I K, i. e . ,  by 
only 0. 8% of & *. When p increases from 0.01 x 105 N/m S to 294.3 x 10 s N / m  S , 6 T = 1 1 6 . 3 K  and 6& = - 1 6 .  8 K (2. 2% 
of &*). Even more striking is the example  i m 2930 X 103 I /kg,  when the same pressure changes give the following 

values for 6 T and 6&, respectively:  124. 7 and - 7.1 K (1, 4% of &*) in the first case, and 299. 8 and - 1 1 . 1  (2.2% of 

*) in the second. Analogous results are obtained for other ( intermediate)  values of i for superheated steam in the above 
pressure range. 

Thus, there are indications that, although the temperature T of a real  gas changes quite considerably in an i sen-  
thalpic process of a real  gas, the " ideal"  temperature & changes very l i t t le .  Then in approximate calculat ions (second 
approximation),  one could assume i = i(&), replace the par t ia l  derivatives in (2) and (4) by the to ta l  derivatives d i /du ,  
d i / d g ,  and du/dl~-, and, in averaging k, replace the derivat ive (ak/Og)s by the derivat ive dk /dg .  This would justify 
even more strongly the choice of & as one of the parameters of state governing the variation of  k - in approximate c a l -  
culations as the only parameter ,  in exac t  calculat ions as one of two, the second being the entropy s. 

Assuming that i ~ i(l~), we obtain & m 9 "  = T* and k = k*. Starting from formula (6), we obtain 

k = c;/c;. (I~) 

Formula (11) is very s imilar  to formula (1), but it  is approximate and, what is very important ,  c~ and c v are not 
the true specific heats of  the real  gas, but the specific heats of an idea l  gas at  the same i or at the same 8,  or (approx 
imate ly)  at the same temperature.  By analogy with 9 we may  ca l l  these the " ideal"  specific heats of  a real  gas. Now 
i t  is clear  why in the example  of s team the adiabat ic  exponent was near ly  equal  to k, the exponent of  idea l  water r a -  
per at the same temperature.  I t  is also clear  why the approximate value k = 1 .3 ,  long ago proposed for superheated 
steam, is st i l l  used in approximate calculations.  The accuracy of the calculat ions based on this value is almost the 
same as the accuracy of calculat ions for idea l  water vapor based on k = const. 

Engineering formulas containing the adiabat ic  exponent of  superheated steam and, apparently,  other superheated 

vapors, can be made more exact  in the same way as the equations for an idea l  gas. 

The use of  the parameter  & is also convenient in the case of saturated steam, where 

= ~ '  @ X (e"  - -  e ' ) .  (12) 

Admit tedly ,  in the case of saturated steam the variat ion of  9 at i = const even i.n approximate calculat ions cannot be 
neglected,  but 6& is considerably smaller  than 6 T. Starting from (2), and taking into account that i, u, and s are 
l inear  functions of the vapor fraction x, we can derive an exact  formula for the adiabat ic  exponent of saturated s team 

as a function of its parameters p and x, which could replace  the usual empi r i ca l  formulas. 

In conclusion, i t  should be noted again that the arguments for the approximate relat ion i ~ i (9),  which then 
leads to u ~ u(&) and k ~ k ($ ) ,  are not rigorous and should be regarded as indications. Despite the fact  that this as-  
sumption is justified in the case of superheated steam over a wide range of temperature and pressure, the genera l iza t ion 

of this assumption and the est imation of its accuracy would require further study. 

NOTATION 

a - speed of  sound; a, b - Van der Waals parameters;  c - flow velocity;  cp., e v - specific heats per unit mass at 
constant pressure and volume, respect ively i - enthalpy per unit mass; k " a d i a b a t i c  (isentropic) exponent; p - pressure; 

g -  gas constant; s - e n t r o p y  per unit mass; T - a b s o l u t e  temperature;  T i - i n v e r s i o n  temperature ,  absolute; Tcr - 
c r i t i ca l  temperature ,  absolute; n - internal  energy per unit  mass; v - specific volume; x - vapor fraction of  saturated 

87 



steam; 6, 61~, and 6 T - def ined by (9); gp, gv - ad iaba t ic  exponents  in the coordinate  systems 4, p and g, v, respec-  
t ively;  p - density; I~ - " ideal"  tempera ture ,  def ined by (8). Subscript cr - values of the parameters  a, C, k, p, and v 

corresponding to the c r i t i ca l  pressure ratio in  nozz le  flow; superscript * ~- values  of Cp, c v, k, T,  and ~ of an idea l  gas 
at the same va lue  of  i as that  of  a real  gas; superscript ' and " - values of the paramete r  I~ of l iquid and vapor at satu- 
ration.  
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